Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1)

نویسندگان

  • Jean-François Briat
  • Hatem Rouached
  • Nicolas Tissot
  • Frédéric Gaymard
  • Christian Dubos
چکیده

Phosphate and sulfate are essential macro-elements for plant growth and development, and deficiencies in these mineral elements alter many metabolic functions. Nutritional constraints are not restricted to macro-elements. Essential metals such as zinc and iron have their homeostasis strictly genetically controlled, and deficiency or excess of these micro-elements can generate major physiological disorders, also impacting plant growth and development. Phosphate and sulfate on one hand, and zinc and iron on the other hand, are known to interact. These interactions have been partly described at the molecular and physiological levels, and are reviewed here. Furthermore the two macro-elements phosphate and sulfate not only interact between themselves but also influence zinc and iron nutrition. These intricated nutritional cross-talks are presented. The responses of plants to phosphorus, sulfur, zinc, or iron deficiencies have been widely studied considering each element separately, and some molecular actors of these regulations have been characterized in detail. Although some scarce reports have started to examine the interaction of these mineral elements two by two, a more complex analysis of the interactions and cross-talks between the signaling pathways integrating the homeostasis of these various elements is still lacking. However, a MYB-like transcription factor, PHOSPHATE STARVATION RESPONSE 1, emerges as a common regulator of phosphate, sulfate, zinc, and iron homeostasis, and its role as a potential general integrator for the control of mineral nutrition is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1;H3 in Arabidopsis

Interactions between zinc (Zn) and phosphate (Pi) nutrition in plants have long been recognized, but little information is available on their molecular bases and biological significance. This work aimed at examining the effects of Zn deficiency on Pi accumulation in Arabidopsis thaliana and uncovering genes involved in the Zn-Pi synergy. Wild-type plants as well as mutants affected in Pi signal...

متن کامل

The transcription factor PHR1 regulates lipid remodeling and triacylglycerol accumulation in Arabidopsis thaliana during phosphorus starvation

Lipid remodeling is one of the most dramatic metabolic responses to phosphorus (P) starvation. It consists of the degradation of phospholipids to release the phosphate needed by the cell and the accumulation of glycolipids to replace phospholipids in the membranes. It is shown that PHR1, a well-described transcriptional regulator of P starvation of the MYB family, largely controls this response...

متن کامل

Proline Accumulation Is Regulated by Transcription Factors Associated with Phosphate Starvation.

Pro accumulation in plants is a well-documented physiological response to osmotic stress caused by drought or salinity. In Arabidopsis (Arabidopsis thaliana), the stress and ABA-induced Δ1-PYRROLINE-5-CARBOXYLATE SYNTHETASE1 (P5CS1) gene was previously shown to control Pro biosynthesis in such adverse conditions. To identify regulatory factors that control the transcription of P5CS1, Y1H screen...

متن کامل

Differential Expression of Arabidopsis thaliana Acid Phosphatases in Response to Abiotic Stresses

The objective of this research is to identify Arabidopsis thaliana genes encoding acid phosphatases induced by phosphate starvation. Multiple alignments of eukaryotic acid phosphatase amino acid sequences led to the classification of these proteins into four groups including purple acid phosphatases (PAPs). Specific primers were degenerated and designed based on conserved sequences of PAPs isol...

متن کامل

Arabidopsis PHL2 and PHR1 Act Redundantly as the Key Components of the Central Regulatory System Controlling Transcriptional Responses to Phosphate Starvation.

When confronted with inorganic phosphate (Pi) starvation, plants activate an array of adaptive responses to sustain their growth. These responses, in a large extent, are controlled at the transcriptional level. Arabidopsis (Arabidopsis thaliana) PHOSPHATE RESPONSE1 (PHR1) and its close homolog PHR1-like 1 (PHL1) belong to a 15-member family of MYB-CC transcription factors and are regarded as th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015